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Abstract 
The theory for slightly distorted crystals [ Kato (1963). 
J. Phys. Soc. Jpn, 18, 1785-1791] is applied to the case 
of quartz AT-cut resonators to interpret stroboscopic 
section topographs. Features in the diffraction process 
such as ray trajectories, phase changes and intensities 
of diffracted waves are drawn from this theory. Fur- 
thermore, it is shown that extra Pendell6sung fringes 
appearing on section topographs with increasing 
acoustic vibration can be directly related to the vibra- 
tion amplitude within a precision of about 0-3 A. 
Experimental images are compared with Kato's theo- 
retical profiles and simulated images obtained by 
solving Takagi's [Acta Cryst. (1962), 15, 1311-1312] 
equations. The results lead to the conclusion that 
stroboscopic X-ray topography is a precise method 
to measure the vibration amplitude in weakly excited 
resonators. 

1. Introduction 
Takagi's equations provide global solutions for X-ray 
waves in any distorted crystal (Takagi, 1962, 1969; 
Taupin, 1964). Nevertheless, this approach is compli- 
cated and does not involve classical notions of 
geometrical optics which are helpful in the under- 
standing of the diffraction process. The theory 
developed by Penning & Polder (1961) and Kato 
(1963, 1964) for slightly distorted crystals appears to 
be very useful for our purpose. This theory was 
applied to the case of bent crystals and revealed that 
extra fringes are expected on section topographs with 
increasing strain gradient, in perfect agreement with 
experimental results (Kato & Ando, 1966; Ando & 
Kato, 1966; Hart, 1966). 

In this paper, Kato's theory for crystals under slight 
thickness shear is developed and it is shown that extra 
fringes appear, similarly to the case of bent crystals, 
with increasing amplitude of the acoustic vibration. 
Experimental section topographs using the strobo- 
scopic technique are shown and permit a comparison 

with profiles calculated from Kato's theory and with 
simulated images obtained by solving Takagi's 
equations. 

It is interesting to point out here that several 
different approaches for X-ray, T-ray and neutron 
diffraction in crystals submitted to an acoustic wave 
have been proposed by several authors (Kohler, 
Mohling & Peibst, 1974; Dyublik, 1986; Polikarpov 
& Skadorv, 1987). These approaches, which were 
developed for the plane-wave case, are based on the 
fact that a crystal within an acoustic wave can be 
described by a superlattice combining the crystal peri- 
odicity and the acoustic periodicity. 

2. Diffraction theory 
In this section, Kato's theory for slightly distorted 
crystals is summarized (Kato, 1963, 1964, 1974). For 
the sake of simplicity, expressions are written for the 
symmetric Laue case and for diffracted waves only. 
The axes used are presented in Fig. 1 where the X-ray 
point source, denoted by o on the entrance face, is 
taken as the origin. When an X-ray beam enters a 
slightly distorted crystal, two kinds of modified Bloch 
waves are excited. The trajectory of the modified 

t 
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o/ 

S o Sh 

Fig. 1. Diffraction geometry, o: X-ray point source; So and s,: 
incident and diffracted directions respectively; L! and L2 : trajec- 
tories ending at the point x, on the exit face; Atz: area limited 
by L1 and L2. 
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Bloch wave obeys the equation 

d p 
+mod-- ~ ( l _ p 2 l , / 2 = f ( x , z )  (2.1) 

where the upper and lower signs correspond respec- 
tively to the upper and lower branches of the disper- 
sion surface. These two families of trajectories are 
called here wavefield (1) and wavefield (2) respec- 
tively. The quantity mo is related to the extinction 
distance Ao by mo= rr/Aoc where c = tan 0~ and 0B 
is the Bragg angle, p, called here the trajectory inclina- 
tion, is the gradient of the trajectory tan 0 = d x / d z  
normalized by e: p = t a n  O/c, so that p = +1 indicate 
the directions of the Borrmann triangle edges and 
p = 0 indicates the oz direction. The term f ( x ,  z) is 
called the 'force' and is expressed in term of the 
displacement vector u(r): 

f ( x ,  z) = rr - - -  c h u (2.2) Oz 2 ~ • 

where h represents the reflection vector. 
Two waves arriving at any point on the exit face 

interfere and the total intensity is therefore given by 

I = [ B111 + B2 I2 + 2(1112) ,/2 cos (S)] 

x exp (-tXot/COS OB ). (2.3) 

L are the intensities of diffracted waves in the non- 
absorption case; the absorption effect is introduced 
by Bi, which describes the anomalous absorption 
effect, and the exponential term for the ordinary 
photoelectric absorption effect where/Zo is the linear 
absorption factor (Appendix I). The important term 
is S, the phase difference between the two wavefields, 
which determines the Pendell6sung fringe contour. In 
particular, the positions of nth-order fringes are given 
by the condition S=2nrr.  The expression for the 
phase difference is 

S = - r r / 2 +  T +  N 

= - r r / 2 + m o C  ~ ( 1 - p 2 ) ' / Z d z  
LI+L2 

+ ~ f ( x ,  z) dx  dz (2.4) 
AI2 

where the term - r r / 2  is the intrinsic phase difference 
between wavefield (1) and wavefield (2) specific to 
the spherical form of the incident beam. In the first 
integral T, called the kinetic term, L~ and L2 denote 
the trajectories of the two wavefields respectively. The 
second integral N is called the potential term where 
A~2 is the area limited by L1 and L2. In this integral, 
the area A12 is counted positively when the circuit 
LI-L2 limiting Al2 is clockwise. 

The validity criterion of this theory is qualitative. 
The radius of curvature should not be so small that 
the direction of propagation of the wavefields changes 
from that of the reflected wave to that of the incident 

wave in a quarter of an extinction distance: 

¼((l-p2))  -~-Zz2-C2-~x 2 h . u  A2o_<l (2.5) 

where < > indicates the average value along one trajec- 
tory. This is equivalent to the usual criterion for 
non-interbranch scattering in X-ray dynamical theory 
(Balibar, 1968). 

3. Case of a crystal under pure thickness shear 

An ideal case where the acoustic vibration is a pure 
cosine wave of thickness-shear mode is considered 
here: 

u(z)  = Uo cos (nTrz/ t) (3.1) 

where the displacement u is along the ox axis, i.e. 
parallel to the reflection vector h for the symmetric 
Laue case, Uo is the vibration amplitude, n an odd 
number and t the crystal thickness. The acoustic 
wavelength Lo is related to the thickness by Lo = 2t /n.  
To illustrate the following calculations, the values 
used are taken from the case of a quartz AT-cut 
crystal. The values concerning the acoustic charac- 
teristics are n = 5, t = 1.3196 mm (Lo = 0.52784 mm), 
and the diffraction values are the reflection vector 
h=210,  lattice distance d o = l / h = 2 . 4 5 6 5 5 ~  and 
extinction distance along the reflection plane Ao = 
101.6 Ixm which corresponds to an X-ray wavelength 
of 0.689 A. 

The validity criterion (2.5) applied to the present 
case gives 

-~((1 _ p2) )(1/ do )ld2 u / dz2l A 2o <- ( Uo/ 4do )( nrr / t )2 A 2o 

o r  
-<1 

Uo/ do <- ( 1/rr2)(Lo/Ao )2. (3.2) 

This means that the theory is applicable for the range 
of Uo -< 7/~. For the sake of convenience, the follow- 
ing discussion concerns the range of Uo -< 5 A and its 
extension is quite easy. 

( A ) Trajectories 

From (2.2), the force f ( z )  is obtained and it varies 
only with thickness for the present case, in the same 
way as the displacement u(z): 

rr dZh. u 
f ( z ) -  e dz 2 

- - c  do p c o s  nrr . 

The trajectory is integrated from (2.1)" 
z / t  

x _ f a ~: b sin (n~'q~) 
c t -  { l + [ a w b s i n ( n r r ¢ ) ] 2 }  '/2d~°" 

0 

(3.3) 

(3.4) 
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The parameter a is related to the initial inclination 
p~ at the entrance point of a trajectory, a =  
Pc~ (1 -p~ )  1/2, and it is called the trajectory parameter. 
b is the ratio between the acoustic characteristics 
uo/Lo and the diffraction ones do/Ao: b= 
2~ruoAo/doLo. The integral (3.4) could in principle be 
expressed in terms of elliptic integrals in a rather 
complicated way which will not simplify our dis- 
cussion, so the trajectory equation will be left in this 
integral form; its calculation is very easy. Some 
properties of trajectories can be deduced from (3.4) 
(Appendix II): 

(a )  The trajectories of one wavefield do not cross 
each other. This point was taken into account in (2.4) 
for phase $, since phase jumps should be added to 
S in the case of crossing trajectories. 

(/5) The inclination of a trajectory at the exit face 
(z = t) is the same as that at the entrance face (z = 0). 

(y) Trajectories of wavefield (1) and wavefield (2) 

N 

incident direction 
. . . .  

1 

N 

N 

(a) 

uo=2A 

- 

\ 
\ 

(b) 
n 

uo=4A 

I I I ~ I 
-1 0 1 

x /c t  
(c) 

Fig. 2. Selected trajectories. The trajectory inclinations at the 
entrance point are the same for the three cases: Pe varies from 
-1 to 1 with step 0.1. (a) uo =0 A, perfect crystal; (b) Uo =2 A; 
(c) uo =4A. 

are symmetric with respect to the oz axis. More pre- 
cisely, if a trajectory L1 of wavefield (1) is defined 
by the initial inclination +Pc (or +a ) ,  the trajectory 
L2 of wavefield (2), defined by the opposite initial 
inclination -pc (or - a ) ,  is symmetric with respect to 
the oz axis. This symmetry exists also for the 
intensities of two wavefields, as will be shown later. 

Trajectories of wavefield (1) with different initial 
inclinations Pe are shown in Figs. 2(a) - (c) ,  corre- 
sponding respectively to Uo = 0, 2 and 4 A. In com- 
parison with hyperbolic trajectories in a homo- 
geneously bent crystal, trajectories in the present case 
have an oscillating form related to the form of the 
acoustic wave. As the vibration increases, these trajec- 
tories converge to a region around the middle of the 
Borrmann triangle and shifted to the side of the 
incident beam. Because of the symmetry, the corre- 
sponding trajectories of wavefield (2) are of the same 
form and converge to the side of the diffracted beam. 
The contraction of the trajectories on the central part 
constitutes one factor contributing to the increase 
of diffracted intensity with increasing vibration 
amplitude. 

The asymptotic expression of the trajectories 
[wavefield (1)] close to the edges of the Borrmann 
triangle (a ~ +oo or Pe ~ +1) can be calculated as 

x z (  ~a2) __b cos (nTrz / t ) - I  
~ = + -  1 -  +a3 ct t n rr 

for a ~ +oo (3.5) 

where the first term +(z/t)(1 - 1/2a 2) corresponds to 
the straight trajectory for the perfect crystal and the 
second interprets the influence of the acoustic vibra- 
tion on the trajectory. The trajectories with the initial 
inclination pe=O (or a = O )  also have a simple 
expression: 

x~ ct = (1/nzr) (arcsin {[ b~ ( 1 + b2) 1/2] cos ( n~7.//)} 

- a r c s in  [b/(1 + b2)~/:]). (3.6) 

( B ) Intensities 

For any point x, on the exit face, the parameters 
a] and a2 of the two trajectories ending at this point 
can be determined from the trajectory equation (3.4) 
by putting x(z  = t ) =  x,. The intensity of diffracted 
waves (normalized by the energy of the incident 
spherical wave) without the absorption effect is thus 
expressed in term of the parameters al and a2 (Appen- 
dix III): 

Ii = ('a'/4Aot sin 20B ){(1 + a 2) 

1 

x~(l+[a,~:bsin(nTr~p)]2)-3/2d~p}-I (3.7) 
0 

where al and the upper sign are attributed to 
wavefield (1) and a 2 and the lower sign to wave- 
field (2). 



278 PENDELLOSUNG FRINGES IN STROBOSCOPIC X-RAY SECTION TOPOGRAPHY 

The intensities of wavefields (1) and (2) are sym- 
metric with respect to the oz axis (the middle of the 
Borrmann triangle). In Fig. 3 the intensity of 
wavefield (1) along the exit face for different vibration 
amplitudes is shown. When the vibration increases, 
the intensity is mostly increased in the vicinity of the 
central point along the exit face on the side of the 
incident beam. As the same increase occurs for 
wavefield (2) symmetrically on the side of the diffrac- 
ted beam, an increase of the total intensity is expected 
on the central part of experimental section topo- 
graphs. 

( C ) Phase and total intensity 

Similarly, the phase difference between two waves 
arriving at any point of the exit face can be deduced 
from (2.3) as a function of the parameters as and a2 
of the two trajectories. The kinetic term and the 
potential term have the following expressions: 

1 

T=(1rt/Ao) ~ ({1 + [ a , - b  sin (nTrq~)]z} - ' n  
0 

+ {1 + [a2+ b sin (nTr~p)]2} -1/2) d~p (3.8) 

N =  I f ( z )  dx dz 
A12 

=(TrtlAo) i {[x,(z)-x2(z)]lct} 
o 

x b cos (nTrz/t)nTr dz / t  (3.9) 

where x~ and x2 refer to the trajectories which limit 
the area A~2 and belong respectively to wavefield (1) 
and wavefield (2). 

The variation of T/2~, N/21r and S /2~  along the 
exit face are shown in Fig. 4 for different vibration 
amplitudes. It is recalled here that each integer 
number for S /2~  corresponds to a maximum in 
PendellSsung fringes. For the perfect crystal (Uo = 
0 ,~), S/2~  increases from the edges of the Borrmann 
triangle to the central point up to the value of 12.7, 
i.e. 12 Pendell6sung fringes are expected. When the 
vibration amplitude increases from 0 to 5,~, the 
kinetic term T decreases and the potential term N, 
which is mostly connected to the displacement field 
by the force term f (x ,  z), increases very quickly. Then 
the total phase difference S/2~  increases up to 24-2 
and this means that 12 extra Pendell6sung fringes are 
expected with a vibration amplitude of 5 ,~. The total 
intensity (2.3) is plotted in Fig. 5 for different values 
of Uo where the anomalous absorption Bi is neglected 
for its very small influence on the fringe positions. 
The fringe spacing (Fig. 5) along the exit face is 
directly related to the phase change (Fig. 4c). The 
higher the vibration amplitude, the more rapidly the 
phase increases away from the edges of the Borrmann 
triangle. Fringe spacing reduces very rapidly at the 
edges. But at the central point along the exit face, the 
phase reaches its maximal value and it changes rela- 
tively slowly, so that the fringe spacing remains essen- 
tially the same. This remark suggests that under vibra- 
tion only large spacing fringes on the central part of 
section topographs could be resolved experimentally. 

I 
(arbi trary unit) 

o 

Uo=5A 

Uo=3A 
Uo=2A 

////uo= J 

I 1 I I I I, 
-0 .5  0.5 

x / c t  
- 1  0 1 

Fig. 3. Intensity I~ of wavefield (1) along the exit face for different 
vibration amplitudes. 

(D) Relation between extra fringes and vibration 
amplitude 

The fine structure of Pendell6sung fringes near the 
edges of the Borrmann triangle can rarely be resolved 
experimentally and, as was pointed out previously, 
the situation becomes still more emphasized with the 
presence of an acoustic vibration. To relate extra 
fringes to the vibration amplitude, the central part of 
section topographs is studied. More precisely the 
intensity and phase at the central point along the exit 
face are calculated as a function of uo. All the 
expressions remain the same as previously, with in 
addition the simplification that the two trajectories 
ending at the central point have opposite initial incli- 
nations Pe (or a): a, = - a 2 .  a~ is denoted here by 
ao(b). The parameter ao(b) is determined from (3.4) 
by putting x(z = t )=0 for the trajectory of wave- 
field (1). 

The intensities and phase of the waves are related 
to the vibration amplitude through the function ao (b). 
Fig. 6 shows the dependence of the intensities of the 
two wavefields Io(=I~ = I2) on the vibration ampli- 
tude Uo. The intensity of diffracted waves is increased 
by a factor of 2.5 at the central point along the exit 
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face, when the vibration amplitude uo increases from 
Oto 5A.  

Similarly, the expression of the phase difference is 
rewritten in terms of ao(b) from (3.8) and (3.9) as 

1 

T=(27rt/Ao) ~ {1 +[ao(b)-b cos (nTr~o)]2} -'/2 d~o 

o (3.10) 

1 ~p 

N=(2~t /Ao)  {l+[ao(b)_bsin(mrdp)]2}~/2 
0 0 

x b cos (n~'~o)mr d~o 
1 

f ao(b) - b sin (n~'q~) 
=(2~rt/Ao) {l+[ao(b)_bsin(nrr~o)]2}_,/2 

0 

x [ - b  sin (n~'~)] d~p 
! 

=(2~'t/Ao) ~ {1 +[ao(b)-b sin (n~'~)] 2} 1/2 
0 

-{l+[ao(b)-bsin(n~rq~)]2}-'/2d~p. (3.11) 

The total phase difference S ( = - ~ - / 2 +  T +  N) is then 

S= -'n'/2 + (2 ~'t/ Ao ) 
1 

x~{l+[ao(b)-bsin(n~q~)]2}'/:d~o. (3.12) 
o 

The variations of T/27r, N/27r and S/27r as functions 
of Uo are plotted in Fig. 7, which shows again that at 
the central point along the exit face S/2~ increases 
from 12.7 to 24-2 when Uo varies from 0 to 5 ~ ,  i.e. 
12 extra fringes are expected. 

The total intensity, with the anomalous absorption 
effect Bi neglected, is obtained from (2.3) (Fig. 8)" 

I=2Io[l+cos (S)] exp (-iZot/COS 0~). (3.13) 

This curve shows that the number of extra fringes 
appearing on section topographs is a very sensitive 
indication of the vibration amplitude range. This rela- 
tion constitutes our basic tool to correlate extra fringes 
to the vibration amplitude for the following real cases. 

4. Samples, results and discussion 

(A) Resonator geometry and deformation model 

The resonators studied are synthetic quartz AT-cut 
piano-convex ones (Fig. 9). The diameters of the 
crystal plates (D~) and ofthe metallic electrodes (D2) 
are 15 and 8 mm respectively. The upper face of the 
plates has a curved form in order to confine the 
acoustic energy under the electrodes and the cur- 
vature radius R is 175 ram. The crystal thickness 
t(x, y) at any point on the plates is determined by 
the maximal thickness to( = 1-3196 mm) at the centre 
of the plates and the curvature radius R: 

t (x ,y )=to-R+[R2-(x2+y2)]  1/2. (4.1) 

The total thickness variation in this case is about 
160 txm which implies the existence of one or two 
supplementary fringes due to the thickness variation 
(Ao -- 101.6 ~m), even without vibration. 

For thickness shear modes, the piezoelectric effect 
implies essentially a displacement Ux along the x axis. 
This displacement ux, denoted here as u(r), can be 
decomposed into the eigenmodes which are described 
by three integer numbers (n, m, p) related to the boun- 
dary conditions along the oz, ox and oy directions 
respectively (Tiersten & Smythe, 1979; Stevens & 
Tiersten, 1986): 

u(r)= [ e22 Vz ] 
c66 t(x, y------) + Z c"mpu,,,p(r) exp (-iwt) 

,r,,p (4.2) 

/ 

-1  -0 .5  0 0.5 1 -1  -0 .5  0 0.5 1 -1  -0 .5  0 0.5 1 
x /c t  x /c t  x / c t  
(a) (b) (c) 

Fig. 4. Phase difference along the exit face for different vibration amplitudes. (a) T/2~', kinetic term; (b) N/2"a', potential term; 
(c) S/2~, total phase. 
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Uo=4,&, ! 

Ih uo- A IlJ:  

t 
• uo=OA ,n~ 

/ 

, 
-1 -0 .5  0 0.5 " 

x /c t  
Fig. 5. Total intensity of diffracted waves along the exit face for 

different vibration amplitudes. 

co 

t -  

° '20 

10 

, . , ~  (") 

~ I I I I 
0 2 4 uo(A) 

Fig. 7. Phase difference at the central point along the exit face 
with increasing vibration amplitude. (a) T/2~r, kinetic term; 
(b) N/2~r,  potential term; (c) S/2~r, total phase. 
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o~ 
L_ 

.Q4 t _  

o~ 
v 
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0 
0 4 uo(~) 

J 

c- 
.m 

o~ 

,.Q 
I,_ 

~2 

0 I I I f 
0 2 4 uo(A) 

Fig. 6. Intensity Io(=11 = 12) of wavefieid (l)  or wavefieid (2) at 
the central point along the exit face with increasing vibration 
amplitude. 

Fig. 8. Total intensity of diffracted waves at the central point along 
the exit face with increasing vibration amplitude. 

~ z 

(x.~. y~) 

to = 1.3196 mm 

L~  \ D ,  = 15 mm = i  

R=175mm 

Fig. 9. Resonator geometry, t o : maximal thickness; D1 : resonator 
diameter; D2" electrode diameter; R: curvature radius; (xs, Ys): 
symbolic point of an incident beam arriving at the resonator 
surface. 
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where u,,,,,p(r) represents the" (n, m, p) eigenmode dis- 
placement with a conventionally adopted form and 
C "rap is the component of u(r) decomposed on the 
(n, m, p) mode. The first term in (4.2) interprets simply 
the driving piezoelectric effect. In the notation usually 
employed, the number n is an odd one indicating the 
number of nodal planes in thickness and m and p 
are even numbers indicating the number of local 
minima in the amplitude envelopes along the ox and 
oy directions respectively. When one particular 
(n, re, p)  mode is at resonance, u(r) can be simply 
approximated by the resonant mode C""PU,,mp(r). In 
particular, the mode (n, m, p) = (5, 0, 0) considered 
experimentally has the expression 

u = Uo exp [ - ( a s x  2 +/35yZ)/2] 

x c o s [ 5 ~ r z / t ( x , y ) ] e x p ( - i o ~ t ) ,  (4.3) 

where a5 and /35 are amplitude attenuation 
coefficients determined by the piezoelectric-elastic 
constants and geometry factors such as to and R. 
In our case, as=0"445297mm -2 and /35= 
0.509546 mm -2 and this means that the vibration 
amplitude is attenuated from the centre to the elec- 
trode edge (x2+y 2=42 mm 2) by a factor of about 
2.8 x 10 -2. The vibration amplitude Uo at the centre 
of the resonator is related to the excitation voltage V 
and to the departure of the driving frequency w from 
the resonance frequency tos00: 

Uo = constant x V/ (1 -W~oo /W2) .  (4.4) 

In this formulation where energy dissipation is 
neglected, Uo becomes infinite at the resonance. The 
energy dissipation effect near the resonance is intro- 
duced empirically by putting in a resistive part in 
analogy with electrical circuits: 

to '500 = tosoo + itosoo/ 2 O (4.5) 

where Q, the quality factor, is of order of 1 x 10  6 for 
our resonators in a room environment. If we take into 
account this hypothesis in (4.4), the vibration ampli- 
tude Uo is proportional to the excitation voltage V 
and the quality factor Q at/near the resonance: 

Uo = constant x VQ. (4.6) 

As an example, an applied voltage of about 5 mV 
corresponds to an amplitude Uo of about 4.9 A,. 

( B ) Experimental  method 

The stroboscopic experiments using synchrotron 
radiation were performed at LURE (Orsay, France) 
with the storage ring of DCI (Zarka, Capelle, Detaint 
& Schwartzel, 1987). This method is very well adapted 
to study resonators because the thickness shear reson- 
ance frequency and the frequency of the pulsed radi- 
ation are of the same order (MHz). For our cases, 
the resonators were shaped in such a way that 

the (5,0, 0) mode frequency is twice the pulsed 
synchrotron-radiation frequency (toso0/2zr = 2 x 
3.169280 MHz). The electrical excitation on the res- 
onator is derived from the radiation pulse signal, so 
that the crystal is forced to vibrate at the resonance 
frequency and in synchronism with the radiation 
pulse. Further, a phase shifter permits regulation of 
the relative time phase between the radiation pulse 
and the vibration, i.e. one may observe the vibration 
at different stages resolved in a 1 ns time. The slit 
limiting the incident beam was about 15 Ixm wide and 
the Laue setting was used because it permits several 
images of different reflections to be obtained simul- 
taneously. The crystals were set with a Bragg angle 
0B of 8.068 °, so that the selected incident X-ray 
wavelength h for the 210 reflection was about 0.689/~. 

( C ) Intensi ty  profiles 

If (x~, ys) denotes the position of a point source 
on the upper face of the resonator (Fig. 9), the dis- 
placement u(r) can be transformed into the diffraction 
axis set (Fig. 1). Further, under stroboscopic experi- 
ments, the displacement u(r) appears to be fixed and 
has an apparent amplitude Uo cos q~, where q~ is the 
relative time phase between the vibration and the 
pulsed radiation. The apparent displacement u'(r) in 
the diffraction plane is thus 

o r  

u '=  Uo cos q~ exp { - [ a s (x  + x~ )2 +/35y]]/2} 

x cos [ 5 z r z / t ( x  + x,,  y,  )] 

u ' =  exp [ - a s ( x  2 + 2xpc)/2]Uo(Xs, y~ ) 

x cos [ 5 r r z / t ( x  + xs, ys )] (4.7) 

where Uo(X~, y~ ) = Uo cos @ exp [ - ( a s x  2 + Bsy2)/2] is 
the vibration amplitude at the entrance point. The 
vibration amplitude and the crystal thickness depend 
on x and are not constant inside the Borrmann 
triangle. These variations can be neglected here 
because they are small over the Borrmann triangle. 
By inserting the values at the entrance point (x,, y~ ), 
one may obtain an approximate expression for u'(r): 

u"-" Uo(X,, y, ) cos [5"a'z/ t(x~, ys )]. (4.8) 

With this expression, the total intensity of diffracted 
waves at the central point along the exit face can be 
calculated for any value of Ys by using the formulas 
of § 3(D). The total intensity as a function of ys, 
which corresponds to the intensity along the central 
line on a section topograph, is thus established. Two 
profiles corresponding respectively to uo = 0 and 3/~ 
are shown in Fig. 10 where x~ = 0 mm and q) = 0. The 
first profile shows one fringe due to the thickness 
variation and the second one contains six extra fringes 
due to the vibration whose amplitude has a Gaussian 
envelope, exp (-/35y2/2). Such profiles compared 
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with experimental images, Le. with the fringe posi- 
tions on the central line of section topographs,  pro- 
vide values of the vibration amplitude on the central 
line. 

The precision of such profiles has to be discussed. 
Two error sources exist: on the one hand the neglect 
of the variation of the thickness and the vibration 
amplitude along the ox direction and on the other 
hand the validity of Kato's  theory itself when the 
vibration amplitude is high (Uo = 7/~). The examples 
shown below suggest that, for the present case, the 
last point is most important and an error correspond- 
ing to one half the fringe spacing, i.e. 0.3/~ when 
generously estimated, may be reached for high values 
of Uo. 

( D) Experimental images and simulated images 

The first experimental section topograph (Fig. 11 b) 
was taken in the middle of the electrode on the 
resonator with x~ = 2.07 mm, and with a time phase 
qb= ¢r/4. The excitation voltage V was 6-046 mV 
which implies a local vibration amplitude 
Uo(Xs, Ys)]xs=2.07,ys=O.O0 of about 1.61/~ for Q'-- 
1 x 106. Here, Uo(X~, y~) cannot be determined ibre- 
cisely, because the value of the quality factor Q is 
only approximate and it can also vary with the room 
temperature. By taking the extra fringe positions from 
the central line of the experimental image, the vibra- 
tion amplitude Uo(X,,y,) was determined by com- 
parison with the intensity profile l(y~) (Fig. 11a): 
Uo(Xs, Ys)[x=2.o7,y=o.oo = 1"35/~. With this value of 
uo(x,, y~), the simulation was performed by solving 
Takagi's equations with the x-dependent  term for the 
vibration amplitude included in the deformation 
model (Fig. l l c ) .  It can be seen that the extra fringe 
positions in the experimental image are reproduced 
either by the simulated image or by the intensity 
profile. This demonstrates the agreement between 
Kato's theory and Takagi's theory for the present case. 

A second experimental image with a higher vib- 
ration amplitude is shown in Fig. 12(b) where 

1 o =3,'~ 

O! V Y,V V " V - - ~ \ J "  , , , \ J  
0 2 4 6 ys (mm) 

Fig. 10. Profile of the intensity l(y~) along the central line of a 
section topograph for a curved resonator where x~ = 0 mm and 

= O. (a) Uo = 0/~, perfect crystal; (b) Uo = 3 •. 

x s = l ' l l  mm, d s = 0  and the estimated value of 
Uo(X, y~ )l,,,=~.~l,y,--o.oo was about 4.30 A. As before, 
the determination by the intensity profile leads to 
Uo(X, y~ )lx~=l.l~,y,--o.oo = 4-80 tl, (Fig. 12zz). The simu- 
lation (Fig. 12c) was performed by solving Takagi's 
equations and it was found that the image with 
a corrected value Uo(X, ys)lxs=~.~,y,=o.oo=5.00A 
reproduced the experimental fringe positions best. 
A small difference exists between the experimental 
image and the two calculations for the upper part of 

(a) 

In tens i ty  
0 1 2 

Y~ 
(rnrn) 

(b) (c) 

Fig. 11. Comparison between intensity profile, experimental image 
and simulated image. (a) Intensity profile l(y~ ) using the values 
xs = 2.07 mm, • = w/4 and Uo(X, y~ )lx,=2.o7.r,-o.oo = 1-35 ,~. (b) 
Experimental image where xs = 2.07 mm and d5 = ¢r/4. (c) Simu- 
lated image performed with the same values as in (a). 
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the section topograph where the vibration amplitude 
is high (about 5 A). This is probably due to the 
experimental factors not taken into account such as 
saturation of the recording film, diffusion by air and 
polychromatism of the incident beam. Some asym- 
metry in fringe patterns with respect to the central 
line can also be seen in the experimental and simu- 
lated images. This fact is most pronounced on the 
experimental image. This asymmetry may suggest the 

Intensity 
0 1 

(rnm) 
(a) (b) (c) 

beginning of the vibration amplitude range where 
Kato's theory is becoming invalid. It is recalled that 
the validity range previously estimated in (3.2) is 
uo<-7A. 

These two examples show that extra Pendell6sung 
fringes can be understood and analysed by Kato's 
theory for the range of vibration amplitudes which is 
roughly estimated by (3.2). It is important to note 
that the criterion (3.2) is applied locally. This means 
that for resonators operating at higher excitation 
levels, one can always apply Kato's theory for zones 
of low amplitudes and get vibration parameters. Such 
determination of acoustic characteristics by the Pen- 
dell6sung fringe contour is useful for further work in 
order to analyse the influence of defects on the vibra- 
tional state which is one aim of the resonator study. 

The authors wish to thank Dr Epelboin whose 
assistance made possible the simulation of images 
using his program DEFV. This work was sup- 
ported by the DRET through contract No. 
8734138004707501. 

APPENDIX I 

( A ) Intensity 
The intensity of the waves, or the energy transpor- 

ted along each trajectory, depends on the initial and 
final conditions of the trajectory: 

• r cos0,, (1-pe)( l+pa) I 8pe I 
l - A o  2sin20B ( l - p 2 )  3/2 ~a~ ' (I.1) 

where the subscript e expresses the conditions at the 
entrance face and the subscript a those of the exit 
face. The last term represents the change in the trajec- 
tory cross section and it is given by the following 
formula. If the equation F(x, z, pe ) = 0 defines all the 
trajectories through the parameter pe, then 

8aa I IoF/Op, I 
8pel -[(OF/OX)2-F(OF/Oz)2] 1/2" (I.2) 

( B ) Anomalous absorption 
Bi=exp[+(I.ts/cos OB) ~ ( l - p 2 )  I/2 dz] (I.3) 

L~ 

where i =  1,2 and the upper and lower signs are 
respectively for wavefield (1) and wavefield (2). Li 
denotes the trajectory. /~g is proportional to the 
imaginary part of (XsX~) 1/2 where Xs is the g-order 
term in the Fourier expansion of the susceptibility. 

Fig. 12. Comparison between intensity profile, experimental image 
and simulated image. (a) Intensity profile l(ys ) using the values 
x~=l.llmm, ~=0 and Uo(X, ys)lx,~Nl.y,.o.oo=4"8O A. (b) 
Experimental image where xs= 1.11 mm and ~ = 0 .  (c) Simu- 
lated image performed with the same values of x, and • as in 
(a) and a corrected value Uo(X,, y~)lx,.i.luy,.0.oo = 5.00 A. 

APPENDIX II 

(a)  We want to show that only one trajectory 
passes through any point (x, z) inside the Borr- 
mann triangle, When the trajectory equation (3.4) is 
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rewritten as [for wavefield (1)] 
z/t 
f a - b sin (nTr~) x 

F ( x , z , a ) =  {l+[a_bsin(n.rrq~)]2}l/2d~P-ct = 0 

o (II.1) 

we shall know whether several values of a satisfy 
F(x, z, a ) =  0 for a given point (x, z). This case can 
be eliminated because F is a monotonically increasing 
function of a: 

z/t 

OF I d~ 
-~a- {l+[a-bsin(nvr~p)]2} 3/2>0" (II.2) 

0 

The existence of a root can also be ensured by 

F(x, z, a)] . . . .  < 0  and F(x, z, a)[~_,+~o>O. 

(/3) The inclination of the trajectory on the exit 
face is given by 

a~:bsin(nTrz/ t)  I 
P l z = ' -  {1 + [ a  :v b sin (nTrz/t)] 2} 1/2 z=, 

a 
= (1 + a 2) 1/2- Pe. (II.3) 

(y) If the trajectory L1 of wave (1) is defined by 
its initial inclination +pc (or +a ) ,  

z/t 

x_2 = f a - b sin (mr~o) 
d~o, (II.4) et J { 1 + [ a - b sin (n~o)  ]2} 1/2 

o 

the trajectory L2 of wave (2) defined by the opposite 
initial inclination -pc (or - a )  has the expression 

z/t 

- - =  I X1 
x2 - a  + b sin (nlr~o) d~ = - - - .  
ct { l+[-a+bsin(mrq~)]2}  1/2 ct 

o (II.5) 

A P P E N D I X  III 

First, it is noted that 

a 
Pe = P a - - ( l + a 2 ) l / 2  

and (III.1) 

cos 0a = (1 + t an  2 0a) -1/2 = (1 + c2p2~) -1/2. 

The terms concerning the initial and final conditions 
of the trajectory are calculated as follows: 

cos O~ (1 -pc ) (1  +pa )  
2 sin 20s (1 --pZe)3/2 

= [4 sin 0B cos 0B(1 + c2p2~)1/2(1 - p2)1/2]-i 

(III.2) 

The trajectory equation (3.4), when the left term is 
replaced, becomes 

z/t 

f a - b sin (nTr~) 
F[x ,z ,a(pe)]= { l+[a_bs in(nTr~)]2} l /2d  ~ 

0 

x 
- - - = 0 .  (III.3) 

ct 

The cross section change is then given by 

and 

6aa = laF/aal da/dpe 
6p~ [(aF/ax)2+(aF/az)2] I/2 

0_~[ 1 OF] a p~ 
z=, ct' ~=, t( l + a2) 1/2 t 

(III.4) 

1 

I  i+C°-b sin 
z=f 

0 

da 1 
dp~ ( 1 - p ~ )  3/2' 

thus 

~Pe = (1 --p~)3/2(1 + c2p2~)1/2 

1 

x f { l+[a-bs in(nTr~)]2}-3 /2d  ~. (III.5) 

0 

Finally, we obtain the intensity by putting together 
these two results: 

7r 1--p2e 
I =  

4Aot sin 20B ~ { 1 + [ a - b sin (nrr~) ]2}-3/2 d~ 

(III.6) 

and this formula is the same as (3.7) by replacing Pe 
by a. 
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Abstract 

(SnS)t.17NbS2, Mr=334"92,  is a compound with 
misfit layer structure consisting of two-atom-thick 
layers of SnS and three-atom-thick sandwiches of 
NbS2 which alternate along the c axis. The lattices 
of SnS and NbS2 both have C-centered orthorhombic 
unit cells which match along the b and c axes but 
not along the a axes. The unit cells and space groups 
are a = 5 . 6 7 3 ( 1 ) ,  b = 5 . 7 5 0 ( 1 ) ,  c=11 .760 (1 )  A, 
space group C2mb (no. 39), Z = 4 ,  for SnS; a = 
3.321 (1), b = 5.752 (1), c = 11-763 (1) ~ ,  space group 
Cm2m (no. 38), Z = 2, for NbS2. From the ratio of 
the lengths of the a axes of the two parts of the 
complete structure (5.673/3.321= 1.708 being irra- 
tional) one obtains a composition (SnS)I.~7NbS2. The 
structure determination consisted of three parts: the 
structures of the SnS and NbS2  parts separately and 
their relative position. Intensities were measured with 
Mo Kd radiation (A = 0.71073/~) at T = 293 K, p, = 
102.3 cm -1. For the SnS part RF=0.088  for 306 
unique reflections; for the NbS2 part RF = 0.031 for 
329 unique reflections (for both cases Okl reflections 
excluded). The relative position of these two lattices 
was determined from the common reflections Okl: 
RF = 0 " 0 7 2  for 98 reflections. The SnS part of the 
structure consists of deformed slices of SnS with a 
thickness of half the cell edge of (hypothetical) NaC1- 
type SnS. Each Sn atom is in this way coordinated 
by five sulfur atoms; four sulfur atoms are in a plane 
perpendicular to the c axis with SnS distances 2.74 (1) 
( Ix ) ,  2.913 (1) (2x) and 3.01 (1) ~ ( Ix) ,  whereas the 
fifth Sn-S bond with length 2.695 ( 9 ) ~  is approxi- 
mately along the c axis. The NbS2 part of the structure 
is that of NbS2-2H with Nb in trigonal prisms of 
sulfur; the Nb-S distances are 2.473 (1)A.  From 
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refinement of the common Okl reflections the relative 
y and z positions of the two sublattices were found; 
along the common a direction the lattices of SnS and 
NbS2 are incommensurate. 

Introduction 

Compounds of assumed composition M T X  3 ( M =  
Sn, Pb; T = T i ,  V, Nb, Ta; X = S ,  Se) have been 
known for a considerable time (Schmidt, 1970; Sterzel 
& Horn, 1970; van Maaren, 1972; Donohue,  1975). 
The crystals obtained by syntheses from the elements 
have an appearance suggesting a layered structure 
but owing to very easy plastic deformation it has so 
far not been possible to determine the structure. X-ray 
powder diffraction revealed teteragonal or pseudo- 
tetragonal unit cells with a =4 ,  c =  12/~. We suc- 
ceeded in growing single crystals by vapor transport 
using chlorine as transport agent. In this paper the 
determination of the misfit layer structure of 'SnNbS3'  
is described; the composition of the compound turned 
out to be (SnS)~.17NbS2; it will be designated for 
brevity as 'SnNbS3'. 

Experimental 

'SnNbS3' could be grown as thin platelets with 
diameters up to about 5 mm. The black crystals are 
mechanically very soft and have a brilliant luster. The 
starting material was SnNbS3 obtained by syntheses 
from the elements at 1123 K and the temperature 
gradient was 1113-1043K; transport was to the 
low-temperature side of the quartz tube. 

Structure determination 
Single-crystal X-ray diffraction with an Enraf-Nonius  
CAD-4F diffractometer using monochromatized Mo 
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